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Abstract

In this work we study the homogenisation problem for nonlinear elliptic equations involving p-Laplacian-
type operators with sign-changing weights. We study the asymptotic behaviour of variational eigenvalues
which consist of a double sequence of eigenvalues. We show that the kth positive eigenvalue goes to
infinity when the average of the weights is nonpositive, and converges to the kth variational eigenvalue of
the limit problem when the average is positive for any k ≥ 1.
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1. Introduction

We consider the following nonlinear eigenvalue problem with indefinite weight,{
−div(aε(x,∇u)) = λρε(x)|u|p−2u in Ω ⊂ RN ,
u = 0 on ∂Ω,

(1.1)

where λ is the eigenvalue, ρε is a bounded weight function with nontrivial positive
and negative parts and the operator div(aε(x,∇u)) is quasilinear (p − 1)-homogeneous
in the second variable with some precise hypotheses that are stated below (see
assumptions (H0)–(H8) in Section 2). Throughout the paper, p will denote a constant
that satisfies 1 < p <∞. The most relevant example of such an operator is

aε(x, ξ) = |Aε(x)ξ · ξ|(p−2)/2Aε(x)ξ,

with Aε(x) ∈ RN×N a bounded symmetric matrix and positive definite uniformly in
ε > 0. The domain Ω is assumed to be bounded but no regularity hypotheses are
imposed on ∂Ω.
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For this eigenvalue problem (1.1), as discussed in [8], it is known that there exist
two sequences of eigenvalues {λ+

k,ε}k≥1, {λ−k,ε}k≥1, such that

λ+
k,ε →∞, λ−k,ε → −∞ as k→∞.

The asymptotic behaviour as ε ↓ 0 of these nonlinear eigenvalues in the unweighted
case (that is, ρε ≡ 1) was studied in [1, 3, 4]. In particular, for the problem

−div(aε(x,∇u)) = λ|u|p−2u in Ω,

it was proved in [3] that the kth variational eigenvalue converges to the kth variational
eigenvalue of the limit problem

−div(a(x,∇u)) = λ|u|p−2u in Ω,

where a(x, ξ) is the so-called G-limit of the operators aε(x, ξ). Of course, the
convergence is understood up to a subsequence. See Section 2 for the definition
and some elementary properties of G-convergence. The G-convergence of monotone
operators has a long history and there are many results in the literature establishing
the usefulness of this concept in the limit behaviour of boundary value problems,
especially in homogenisation theory (see, for example, [2, 4, 9] and references therein).

The purpose in this paper is to extend the results of [3] to the indefinite-weighted
case. The main result of this work is the following theorem.

Theorem 1.1. Assume that aε(x, ξ) satisfies (H0)–(H8) as defined in Section 2.
Moreover, assume that aε(x, ξ) G-converges to a(x, ξ). Let ρε ∈ L∞(Ω) be such that
ρε ⇀ ρ weak* in L∞(Ω). Then:

(1) if ρ+ = 0, λ+
k,ε →∞ as ε ↓ 0;

(2) if ρ+ , 0, λ+
k,ε → λ+

k as ε ↓ 0, where {λ+
k }k≥1 are the positive eigenvalues

associated to the operator a(x, ξ) with weight ρ.

Our approach follows closely the one in [3]. The main difference is the fact that we
cannot work with a uniform normalisation condition as in the unweighted case. The
normalisation condition varies with ε and that has to be accommodated.

Remark 1.2. An analogous statement holds for the negative eigenvalues with the
obvious modifications.

For second-order linear elliptic operators, the eigenvalue convergence for the
problem of periodic homogenisation with sign-changing weights was studied recently
in [10]. Our results here are closely related, although several differences arise.
In our setting we are not able to use asymptotic expansions, nor orthogonality of
eigenfunctions, so our proofs are different, based mainly on the variational arguments
developed in [3]. The main drawback of our approach is that we were unable
to obtain one of the results of [10] dealing with the convergence of the rescaled
sequences of eigenvalues and the corresponding limit problem. On the other hand,
our hypotheses on aε go beyond periodic homogenisation and we have relaxed the
regularity hypotheses on Ω, since in [10] the domains are of class C2,α. Also, as in [5],
different boundary conditions can be handled in this way.
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A natural question is the study of a quantitative version of Theorem 1.1, that is, to
give some precise rate of convergence or divergence of the eigenvalues. Recently, in
[7], we obtained the rate of convergence of eigenvalues of problem (1.1) in the case
where the operator aε(x, ξ) is independent of ε and the weight function is positive and
given in terms of a periodic function ρ, as ρε(x) = ρ(x/ε). See also the bibliography
in [7] for references about the linear problem and [5] for the analysis of different
boundary conditions. Moreover, [13] analyses the Fučik eigenvalue problem for the
p-Laplacian and [12] studies the case of the fractional Laplacian. We remark that in
the one-dimensional case very simple proofs of most of these results can be obtained
by means of a Lyapunov-type inequality (see [6]).

In order to perform such analyses, we need to make some further assumptions on
the weights ρε and on the operators aε(x, ξ). First, we assume that the weights ρε are
given in terms of a periodic function ρ in the form ρε(x) = ρ(x/ε). In this case,

ρε ⇀ ρ̄ :=
∫

Y
ρ(y) dy,

where Y = [0, 1]N and the function ρ is assumed to be Y-periodic. Under these
assumptions, we obtain a precise rate of divergence for the eigenvalues.

Theorem 1.3. Assume that aε(x, ξ) satisfies (H0)–(H8) defined is Section 2. Let ρε(x)
be given as ρε(x) = ρ(x/ε), where ρ is Y-periodic, Y = [0, 1]N and ρ ∈ W1,n(Ω). Then:

(1) if ρ̄ = 0, then λ±k,ε = O(ε−1) as ε ↓ 0;
(2) if ρ̄ > 0, then ελ−1,ε is bounded away from zero and εpλ−k,ε is bounded away from

infinity as ε ↓ 0;
(3) if ρ̄ < 0, then ελ+

1,ε is bounded away from zero and εpλ+
k,ε is bounded away from

infinity as ε ↓ 0.

Remark 1.4. In [10], where only linear eigenvalue problems and periodic homog-
enisation were considered, it was proved that c−k ε

−2 ≤ λ−k,ε ≤ C−k ε
−2 when ρ̄ > 0, by

using a factorisation technique to construct the asymptotic eigenfunctions. We cannot
use such arguments here, due to the nonlinear character of the problem, and we get
only the upper bound with a worse lower bound.

Finally, in the case where the operators aε(x, ξ) are independent of ε, we can obtain
a rate of convergence of the eigenvalues.

Theorem 1.5. Let aε(x, ∇u) = a(x, ∇u) be fixed, satisfying hypotheses (H0)–(H8)
defined in Section 2. Let ρε(x) := ρ(x/ε), where ρ ∈ L∞(RN) is a Y-periodic function,
Y = [0, 1]N . Let ρ̄ =

∫
Y ρ dy. If ρ̄ > 0,

|λ+
k,ε − λk| ≤ Cε,

where C is given explicitly and depends only on k, p, N and ‖ρ‖∞. An analogous result
holds when ρ̄ < 0.
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After this introduction, the paper is organised as follows. In Section 2 we recall
some preliminary results needed in the rest of the paper. In Section 3 we prove the
main result of the paper, namely Theorem 1.1. In Section 4 we prove our results on
the divergence of eigenvalues (Theorem 1.3). Finally, in Section 5, we prove the rate
of convergence of the eigenvalues (Theorem 1.5).

2. Preliminary results

2.1. G-convergence of monotone operators. The operator A : W1,p
0 (Ω)→ W−1,p′

(Ω) is given by
Au := −div(a(x,∇u)).

We assume that a : Ω × RN → RN satisfies, for every ξ ∈ RN and almost every x ∈ Ω,
the following conditions.

(H0) Measurability: a(·, ·) is a Carathéodory function, that is, a(x, ·) is continuous for
almost every x ∈ Ω, and a(·, ξ) is measurable for every ξ ∈ RN .

(H1) Monotonicity: 0 ≤ (a(x, ξ1) − a(x, ξ2))(ξ1 − ξ2).
(H2) Coercivity: α|ξ|p ≤ a(x, ξ) · ξ.
(H3) Continuity: |a(x, ξ)| ≤ β|ξ|p−1.
(H4) (p − 1)-homogeneity: a(x, tξ) = tp−1a(x, ξ) for every t > 0.
(H5) Oddness: a(x,−ξ) = −a(x, ξ).

Let us introduce Ψ(x, ξ1, ξ2) = a(x, ξ1) · ξ1 + a(x, ξ2) · ξ2 for all ξ1, ξ2 ∈ R
N and all

x ∈ Ω, and let δ = min{p/2, p − 1}.

(H6) Equi-continuity:

|a(x, ξ1) − a(x, ξ2)| ≤ cΨ(x, ξ1, ξ2)(p−1−δ)/p((a(x, ξ1) − a(x, ξ2)) · (ξ1 − ξ2))δ/p.

(H7) Cyclical monotonicity:
∑k

i=1 a(x, ξi) · (ξi+1 − ξi) ≤ 0 for all k ≥ 1 and ξ1, . . . , ξk+1,
with ξ1 = ξk+1.

(H8) Strict monotonicity: for γ = max(2, p),

α|ξ1 − ξ2|
γΨ(x, ξ1, ξ2)1−(γ/p) ≤ (a(x, ξ1) − a(x, ξ2)) · (ξ1 − ξ2).

Under these conditions,A is a monotone operator. We have the following results.

Proposition 2.1 [1, Lemma 3.3]. Given a(x, ξ) satisfying (H0)–(H8), there exists a
unique Carathéodory function Φ which is even, p-homogeneous, strictly convex and
differentiable in the variable ξ, satisfying

α|ξ|p ≤ Φ(x, ξ) ≤ β|ξ|p (2.1)

for all ξ ∈ RN , almost every x ∈ Ω, such that

∇ξΦ(x, ξ) = p a(x, ξ),

and normalised such that Φ(x, 0) = 0.
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Let us recall the definitions of G- and Mosco-convergence.

Definition 2.2. The family of operatorsAεu := −div(aε(x,∇u)) G-converges toAu :=
−div(a(x,∇u)) if, for every f ∈ W−1,p′(Ω) and for every fε strongly convergent to f in
W−1,p′(Ω), the solutions uε of the problem{

−div(aε(uε,∇uε)) = fε in Ω,
uε = 0 on ∂Ω,

satisfy the following conditions:

uε ⇀ u weakly in W1,p
0 (Ω),

aε(x,∇uε) ⇀ a(x,∇u) weakly in (Lp(Ω))n,

where u is the solution to the equation{
−div(a(x,∇u)) = f in Ω,
u = 0 on ∂Ω.

Definition 2.3. Let X be a reflexive Banach space and F j : X→ [0,+∞] be a sequence
of functionals on X. Then F j Mosco-converge to F if and only if the following
conditions hold.

(1) Lower bound inequality: for every sequence {u j} j≥1 such that u j ⇀ u weakly in
X as j→∞,

F(u) ≤ lim inf
j→∞

F j(u j).

(2) Upper bound inequality: for every u ∈ X, there exists a sequence {u j} j≥1 such
that u j → u strongly in X as j→∞ such that

F(u) ≥ lim sup
j→∞

F j(u j).

In the general case, the following results were proved in [1, 4].

Theorem 2.4 [4, Theorem 4.1]. Assume that aε(x, ξ) satisfies (H1)–(H3). Then, up to
a subsequence,Aε G-converges to a maximal monotone operatorA whose coefficient
a(x, ξ) also satisfies (H1)–(H3).

Theorem 2.5 [1, Theorem 2.3]. If Aεu := −div(aε(x, ∇u)) G-converges to Au :=
−div(a(x,∇u)) and aε(x, ξ) satisfies (H0)–(H8), then a(x, ξ) also satisfies (H0)–(H8).

Lemma 2.6 [1, Lemma 4.2]. Given aε(x, ξ), a(x, ξ) satisfying (H0)–(H8), and Φε(x, ξ),
Φ(x, ξ) as in Proposition 2.1, define Fε, F : Lp(Ω)→ (−∞,+∞] by

Fε(u) =


∫

Ω

Φε(x,∇u) dx, u ∈ W1,p
0 (Ω),

+∞, otherwise,

F(u) =


∫

Ω

Φ(x,∇u) dx, u ∈ W1,p
0 (Ω),

+∞, otherwise.
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If Aε G-converges to A, then Fε Mosco-converges to F in the strong topology of
Lp(Ω).

2.2. Oscillatory integrals. The proof of the main theorem makes use of results on
convergence of oscillatory integrals. In the case of periodic oscillations, the result
needed here was proved in [7].

Theorem 2.7 [7, Lemma 3.3]. Let Ω ⊂ RN be a bounded domain and denote by Q the
unit cube in RN . Let g ∈ L∞(RN) be a Q-periodic function such that ḡ = 0. Then the
inequality ∣∣∣∣∣∫

Ω

g(x/ε)u dx
∣∣∣∣∣ ≤ ‖g‖L∞(RN )c1ε‖∇u‖L1(Ω)

holds for every u ∈ W1,1
0 (Ω), where c1 is the optimal constant in Poincaré’s inequality

in L1(Q).

For v ∈ W1,p
0 (Ω), applying the previous result to u = |v|p gives the next corollary.

Corollary 2.8 [7, Theorem 3.4]. Suppose that v ∈W1,p
0 (Ω). Under the assumptions of

Theorem 2.7, ∣∣∣∣∣∫
Ω

g(x/ε)|v|p dx
∣∣∣∣∣ ≤ ‖g‖L∞(RN ) pc1ε‖v‖

p−1
Lp(Ω)‖∇v‖Lp(Ω).

In the general case, when no periodicity is assumed, one cannot have a rate of
convergence. Nevertheless, the following result holds.

Theorem 2.9. Let Ω ⊂ RN be a bounded domain and let ρε, ρ ∈ L∞(Ω) be such that
ρε ⇀ ρ *-weakly in L∞(Ω). Let K ⊂ L1(Ω) be a compact set. Then

lim
ε→0

sup
v∈K

∫
Ω

(ρε − ρ)v dx = 0.

Proof. Given r > 0, there exists {vi}
J
i=1 ⊂ K such that K ⊂

⋃J
i=1 Br(vi). By the

hypotheses,

lim
ε→0

max
1≤i≤J

∫
Ω

(ρε − ρ)vi dx = 0.

Let now vε ∈ K be such that

sup
v∈K

∫
Ω

(ρε − ρ)v dx ≤
∫

Ω

(ρε − ρ)vε dx + ε.

Then there exists iε ∈ {1, . . . , J} such that vε ∈ Br(viε). Now∫
Ω

(ρε − ρ)vε dx =

∫
Ω

(ρε − ρ)viε dx +

∫
Ω

(ρε − ρ)(vε − viε) dx

≤ max
1≤i≤J

∫
Ω

(ρε − ρ)vi dx + Mr,
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where M is a bound on ‖ρε‖∞ + ‖ρ‖∞. Therefore,

lim sup
ε→0

sup
v∈K

∫
Ω

(ρε − ρ)v dx ≤ Mr.

Since r > 0 is arbitrary, the result follows. �

In our application of Theorem 2.9, the compact set will be a bounded set in W1,1
0 (Ω).

So, we have the corollary.

Corollary 2.10. Under the same hypotheses as in the previous theorem,

lim
ε→0

sup
v∈W1,1

0 (Ω),
‖∇v‖1≤1

∫
Ω

(ρε − ρ)v dx = 0.

Finally, for bounded sets in W1,p
0 (Ω) the following analogue of Corollary 2.8 holds.

Corollary 2.11. Under the same assumptions as in Theorem 2.9,∣∣∣∣∣∫
Ω

(ρε − ρ)|v|p dx
∣∣∣∣∣ ≤ o(1)‖v‖p−1

p ‖∇v‖p.

2.3. Eigenvalues of quasilinear operators. We refer the interested reader to the
survey [8] for details; only the facts that will be used below are stated here.

In this subsection, we state some results for the eigenvalue problem (1.1) for fixed
ε > 0. That is, we analyse the problem{

−div(a(x,∇u)) = λρ(x)|u|p−2u in Ω,
u = 0 on ∂Ω,

(2.2)

where Ω is a bounded open set in RN . We assume that a(x, ξ) satisfies (H0)–(H8) of
the previous subsection. As a consequence, there exists a potential function Φ(x, ξ)
given by Proposition 2.1.

By using the Ljusternik–Schnirelmann theory, if ρ+ , 0, one can construct a
sequence of (variational) eigenvalues of (2.2) as

λ+
k = inf

C∈Ck
sup
v∈C

∫
Ω

Φ(x,∇v) dx∫
Ω
ρ|v|p dx

, (2.3)

where

Ck = {C ⊂ M+ : C is compact and symmetric, γ(C) ≥ k},

M+ =

{
u ∈ W1,p

0 (Ω) :
∫

Ω

ρ|u|p dx > 0
}

and γ : Σ→ N ∪ {∞} is the Krasnoselskii genus (see [11]) defined by

γ(A) = min{k ∈ N : there exists f ∈ C(A,Rk\{0}), f (x) = − f (−x)}.
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When ρ− , 0, one can construct a sequence of negative eigenvalues in a completely
analogous way changing M+ by M− given by

M− =

{
u ∈ W1,p

0 (Ω) :
∫

Ω

ρ|u|p dx < 0
}
.

It is customary to reformulate (2.3) as

1
λ+

k
= sup

C∈Ck

inf
v∈C

∫
Ω
ρ|v|p dx∫

Ω
Φ(x,∇v) dx

.

From the homogeneity condition (H4), we will also use the following equivalent
characterisation for the eigenvalues:

1
λ+

k
= sup

C∈Dk

inf
u∈C

∫
Ω

ρ|u|p dx,

where

Dk = {C ⊂ S : compact and symmetric with γ(C) ≥ k and 0 < C},

S = M+ ∩

{
u ∈ W1,p

0 (Ω) :
∫

Ω

Φ(x,∇u) dx = 1
}
.

The following useful Sturm-type theorem will be needed later.

Theorem 2.12. Let Ω1 ⊂ Ω2 ⊂ R
N and let {λ+

k,i}k≥1 be the eigenvalues given by (2.3) in
Ωi, i = 1, 2, respectively. Then

λ+
k,2 ≤ λ

+
k,1

for any k ≥ 1. Moreover, let ρ1(x) ≤ ρ2(x) for almost every x ∈ Ω and Φ1(x, ξ) ≥
Φ2(x, ξ) for almost every x ∈ Ω for every ξ ∈ RN . Then, if {λ+

k,i}k≥1 are the eigenvalues
given by (2.3) with weight ρi and potential Φi, i = 1, 2, respectively,

λ+
k,2 ≤ λ

+
k,1.

The proof follows easily by comparing the Rayleigh quotient and using the
inclusion of Sobolev spaces W1,p

0 (Ω1) ⊂ W1,p
0 (Ω2).

3. Proof of the main result

Proof of Theorem 1.1. Assume first that ρ+ = 0 and ρ+
ε , 0 for every ε > 0. If

u ∈ W1,p
0 (Ω), then ∫

Ω

Φε(x,∇u) dx ≥ α‖∇u‖pp.

On the other hand, by Corollary 2.11,∫
Ω

ρε|u|p dx =

∫
Ω

ρ|u|p + o(1)‖u‖p−1
p ‖∇u‖p ≤ o(1)‖u‖p−1

p ‖∇u‖p.
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Hence, we get the bound∫
Ω

Φε(x,∇u) dx∫
Ω
ρε|u|p dx

≥
α

o(1)

(‖∇u‖pp
‖u‖pp

)(p−1)/p
.

Now, taking the infimum in the former inequality,

λ+
1,ε ≥

α

o(1)
µ

(p−1)/p
1 ,

where µ1 is the first eigenvalue of the p-Laplacian with Dirichlet boundary conditions.
From this, the first part of the theorem follows.

Now assume that ρ+ , 0. Then ρ+
ε , 0 for every ε > 0 sufficiently small. Fix δ > 0

and let C ∈ Ck be such that

sup
v∈C

∫
Ω

Φ(x,∇v) dx ≤ λ+
k + δ,

with ∫
Ω

ρ|v|p dx = 1 for any v ∈ C.

The last condition can be imposed without loss of generality by the homogeneity of Φ.
Since C is a compact set, we can choose r > 0 and {ui}

J
i=1 ⊂ C, J = J(r), such that

C ⊂
J⋃

i=i

B(ui, r),∣∣∣∣∣∫
Ω

|u − ui|
p dx

∣∣∣∣∣ < δ

‖ρ‖∞
if u ∈ B(ui, r).

Since ρε
∗
⇀ ρ in L∞(Ω), there exists some ε0 such that C ⊂ M+

ε for 0 < ε < ε0. By
Lemma 2.6, the functionals {Fε}ε>0 Mosco-converge to F and this implies that, for any
1 ≤ i ≤ J, there exists a sequence uε j,i ⇀ ui such that∫

Ω

Φ(x,∇ui) dx = lim
j→∞

∫
Ω

Φε j (x,∇uε j,i) dx.

Moreover, we can assume that uε j,i → ui in Lp(Ω) and thus

1 − δ ≤
∫

Ω

ρε j |uε j,i|
p dx ≤ 1 + δ.

Following [3], let Cε j be the convex closure of {±uε j,i}
J
i=i, a compact convex set

(since it has dimension lower than or equal to J). Observe that, since the functions
uε j,i are weakly convergent and hence bounded in W1,p

0 (Ω), the sets Cε j are bounded in
W1,p

0 (Ω) uniformly in ε j.
Define the projection Pε j : C→ Cε j and observe that, for any v ∈ C, since v ∈ B(ui, r)

for some i,

‖Pε j (v) − v‖p ≤ ‖uε j,i − v‖p ≤ ‖uε j,i − ui‖p + ‖ui − v‖p ≤ δ + r.
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On the other hand, since
∫

Ω
ρ|v|p dx = 1,∫

Ω

|v|p dx ≥
1
‖ρ‖∞

∫
Ω

ρ|v|p dx =
1
‖ρ‖∞

.

Therefore,

‖Pε j (v)‖p ≥ ‖ρ‖
−1/p
∞ − (δ + r) ≥ θ > 0

and Gε j := Pε j (C) ⊂ Cε j\Bθ(0) has genus greater than or equal to k for ε small enough.
Again, the sets Gε j are uniformly bounded in W1,p

0 (Ω). Now

λ+
k,ε j
≤ sup

v∈Gε j

∫
Ω

Φε j (x,∇v) dx∫
Ω
ρε j |v|p dx

≤ sup
v∈Gε j

(∫
Ω

Φε j (x,∇v) dx
)

sup
v∈Gε j

(∫
Ω

[ρε j − ρ]|v|p + ρ|v|p dx
)−1

≤ (1 + O(r) + O(δ) + O(ε j)) max
1≤i≤J

∫
Ω

Φε j (x,∇uε j,i) dx

≤ (1 + o(1)) max
1≤i≤J

∫
Ω

Φ(x,∇ui) dx

≤ (1 + o(1))(λk + δ).

Therefore, we have obtained the inequality

λ+
k,ε j
≤ (1 + o(1))(λ+

k + O(δ)).

Observe that, in particular, the sequence {λ+
k,ε j
} j∈N is bounded for each k ∈ N and

lim sup
j→∞

λ+
k,ε j
≤ λ+

k .

In order to prove the reverse inequality, λ+
k ≤ lim inf j→∞ λ

+
k,ε j

, we start with a family

of compact symmetric sets Cε j ⊂ {u ∈ W1,p
0 (Ω) : ‖∇u‖p = 1}, γ(Cε j ) ≥ k such that

sup
v∈Cε j

∫
Ω

Φε j (x,∇v) dx∫
Ω
ρε j |v|p dx

≤ λ+
k,ε j

+ ε j.

We can extract a sequence that we still denote by {Cε j} j∈N and a compact symmetric
set C such that Cε j → C in the Hausdorff distance induced by the Lp(Ω)-norm. We
have C ∈ W1,p

0 (Ω) and γ(C) ≥ k (see Step 2 in [3, Theorem 3.3]).
By the sequential characterisation of Hausdorff convergence, for any u ∈ C, there

exists uε j ∈ Cε j such that uε j ⇀ u-weakly in W1,p
0 (Ω). From the Mosco-convergence of
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the functionals, Φε → Φ, and the weak convergence ρε
∗
⇀ ρ in L∞(Ω),∫

Ω
Φ(x,∇u) dx∫
Ω
ρ|u|p dx

≤ lim inf
j→∞

∫
Ω

Φε j (x,∇uε j ) dx∫
Ω
ρε j |uε j |

p dx

≤ lim inf
j→∞

sup
v∈Cε j

∫
Ω

Φε j (x,∇v) dx∫
Ω
ρε j |v|

p dx

≤ lim inf
j→∞

λ+
k,ε j

+ ε j.

Taking the supremum in u,

λ+
k ≤ sup

v∈C

∫
Ω

Φ(x,∇v) dx∫
Ω
ρ|v|p dx

≤ lim inf
j→∞

λ+
k,ε j
.

The proof is finished. �

4. Proofs of the divergence results

Proof of Theorem 1.3. We divide the proof into several parts.

Step 1. The case ρ̄ = 0: first eigenvalue, lower bound.
It is enough to consider only the first positive eigenvalue λ+

1,ε; the result for λ−1,ε
follows by considering the weight −ρ. We can bound λ+

1,ε as follows:

1
λ+

1,ε
= sup

v∈W1,p
0

( ∫
Ω
ρ(x/ε)|v|p dx∫

Ω
Φ(x,∇v) dx

)

≤
εc1 p
α
‖ρ‖L∞(RN ) sup

v∈W1,p
0

(‖u‖p−1
Lp(Ω)‖∇u‖Lp(Ω)∫
Ω
|∇v|p dx

)

≤ εC(p, ρ, c1, α) sup
v∈W1,p

0

( ∫
Ω
|v|p dx∫

Ω
|∇v|p dx

)p−1

≤ εC(p, ρ, c1, α, |Ω|),

where we used Theorem 2.8 in the first inequality. The constant C(p, ρ, c1, α, |Ω|) is
obtained from Theorem 2.8 and the isoperimetric inequality, that is, the first eigenvalue
in Ω is greater than the first eigenvalue of a ball B|Ω| with the same measure as Ω,

sup
v∈W1,p

0

∫
Ω
|v|p dx∫

Ω
|∇v|p dx

≤ sup
v∈W1,p

0

∫
B|Ω|
|v|p dx∫

B|Ω|
|∇v|p dx

.

Therefore, the first positive eigenvalue goes to +∞ at least as ε−1.

Step 2. The case ρ̄ = 0: first eigenvalue, upper bound.
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The upper bound follows by taking as test function vε = u(1 + ερ(x/ε))1/p, with a
fixed positive function u ∈ C∞c (Ω). Observe that vε ∈ W1,p

0 (Ω) if ρ ∈ W1,N(Ω). Then

1
λ+

1,ε
= sup

v∈W1,p
0

( ∫
Ω
ρ(x/ε)|vε|p dx∫

Ω
Φ(x,∇v) dx

)

≥

∫
Ω

upρ(x/ε) + ερ(x/ε)2up dx

β
∫

Ω
|∇(u(1 + ερ(x/ε))1/p)|p dx

≥ C(u, ‖ρ‖∞, p, β)
∫

Ω

upρ(x/ε) dx,

where the constant C is strictly positive for ε small enough. Hence, by using
Corollary 2.8, we have proved that λ+

1,ε = O(ε−1).

Step 3. The case ρ̄ = 0: higher eigenvalues, lower bound.
This is immediate from Step 1, since λ+

k,ε ≥ λ
+
1,ε ≥ Cε−1.

Step 4. The case ρ̄ = 0: higher eigenvalues, upper bound.
Fix k ∈ N and ε0 > 0 sufficiently small so that there exists {Qi}

k
i=1, where Qi ⊂ Ω

is a cube of side length ε0 and Qi ∩ Q j = ∅ (we consider open cubes). By the
scaling properties of the eigenvalues, µ1,ε(Qi) = ε

−p
0 µ1,ε/ε0 (Q0), where µ1,ε(U) is the

first eigenvalue of the p-Laplacian in U ⊂ RN with Dirichlet boundary conditions and
weight ρε and Q0 is the unit cube in RN .

Let uεi be the first eigenfunction corresponding to µ1,ε(Qi) and extended by 0 to Ω,
and define the set

Cε
k = span{uεi : 1 ≤ i ≤ k} ∩ B,

where B is the unit ball in W1,p
0 (Ω). Since the functions have disjoint support, Cε

k is a
k-dimensional set and so γ(Cε

k) = k. For an arbitrary element v =
∑

biuεi ∈ Cε
k ,∫

Ω
aε(x,∇v) · ∇v dx∫
Ω
ρ(x/ε)|v|p dx

=

∑k
i=1

∫
Qi

aε(x, bi∇uεi ) · bi∇uεi dx∑k
i=1

∫
Qi
ρ(x/ε)|biuεi |

p dx

≤ β

∑k
i=1 |b1|

p
∫

Qi
|∇uεi |

p dx∑k
i=1 |bi|

p
∫

Qi
ρ(x/ε)|uεi |

p dx

= βε
−p
0 µ1,ε/ε0 (Q0).

Since v was arbitrary,

λ+
k,ε ≤ sup

v∈Cε
k

∫
Ω

aε(x,∇v) · ∇v dx∫
Ω
ρ(x/ε)|v|p dx

≤ βε
−p
0 µ1,ε/ε0 (Q0).

Finally, since from Step 2 we have µ1,ε(Q0) ≤ Cε−1, we obtain the desired result.

Step 5. The case ρ̄ < 0: lower bound.



[13] Homogenisation with indefinite weights 125

Set σ = ρ + c, where we add a positive constant to ρ so that σ̄ = 0. Since∫
Ω

ρ(x)|u|p dx ≤
∫

Ω

σ(x)|u|p dx

for any u ∈ W1,p
0 (Ω), we have the Sturmian-type comparison λ+

k (ρ) ≥ λ+
k (σ), by

comparing the Rayleigh quotients. From this and the previous part of the proof,

Cε−1 ≤ λ+
k (σ) ≤ λ+

k (ρ).

Step 6. The case ρ̄ < 0: upper bound.
Let Q ⊂ [0, 1]N be a cube such that

∫
Q ρ

+(x) dx > 0. Let {µ+
k } be the positive

eigenvalues of {
−div(|∇u|p−2∇u) = µρ|u|p−2u in Q,
u = 0 on ∂Q.

By using Theorem 2.12, the variational characterisation of eigenvalues together with
inequality (2.1) and the scaling of eigenvalues,

λk,ε(Ω) ≤ λk,ε(Qε) ≤ βε−pµk(Q),

and the upper bound is proved.

Step 7. The case ρ̄ > 0.
This one follows from the previous one, by changing ρ→ −ρ.
The proof is finished. �

5. Convergence of eigenvalues

Proof of Theorem 1.5. Consider the case where the operators are independent of ε
and the weights are periodic. Recall the characterisation of the eigenvalues:

1
λk

= sup
C∈Ck

inf
u∈C

∫
Ω

ρ(x)|u|p dx,

where u is normalised with
∫

Ω
a(x,∇u)∇u dx = 1.

For fixed k and given ε > 0, we can choose Cε ∈ Ck such that

1
λk,ε
≤ inf

u∈Cε

∫
Ω

ρ(x/ε)|u|p dx + ε.

Since Cε is compact, we can choose {ui}
J
i=1 ⊂ Cε and r = r(ρ̄, p, ε,Cε) > 0) such that

Cε ⊂
⋃J

i=i B(ui, r) and ∣∣∣∣∣∫
Ω

ρ̄(|u|p − |ui|
p) dx

∣∣∣∣∣ < ε if u ∈ B(ui, r),

and we choose ui0 such that∫
Ω

ρ̄|ui0 |
p dx = min

1≤i≤J

∫
Ω

ρ̄|ui|
p dx.
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Therefore,

1
λk,ε
≤ inf

u∈Cε

∫
Ω

ρ(x/ε)|u|p dx + ε ≤

∫
Ω

ρ(x/ε)|ui0 |
p dx + ε

=

∫
Ω

(ρ(x/ε) − ρ̄)|ui0 |
p dx +

∫
Ω

ρ̄|ui0 |
p dx + ε

≤

∫
Ω

ρ̄|ui0 |
p dx + O(ε)

≤ inf
u∈Cε

∫
Ω

ρ̄|u|p dx + O(ε)

≤ sup
C∈Ck

inf
u∈C

∫
Ω

ρ̄|u|p dx + O(ε) =
1
λk

+ O(ε),

where the term O(ε) is given by Theorem 2.8.
The same arguments can be used interchanging the roles of λk,ε and λk. Hence,∣∣∣∣∣ 1

λk,ε
−

1
λk

∣∣∣∣∣ ≤ Cε.

Finally, using the asymptotic behaviour of eigenvalues, λk ≈ Ckp/N , we obtain the
desired bound and the proof is finished. �
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[2] A. Braides, V. Chiadò Piat and A. Defranceschi, ‘Homogenization of almost periodic monotone
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